- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Nardini, Cesare (3)
-
Alvarez, Luis (1)
-
Aranson, Igor S (1)
-
Arroyo, Marino (1)
-
Aryaksama, Thibault (1)
-
Bechinger, Clemens (1)
-
Caballero, Fernando (1)
-
Cates, Michael E. (1)
-
Cichos, Frank (1)
-
DeSimone, Antonio (1)
-
Doostmohammadi, Amin (1)
-
Duclos, Guillaume (1)
-
Fischer, Alexander (1)
-
Fodor, Étienne (1)
-
Gaspard, Pierre (1)
-
Golestanian, Ramin (1)
-
Gompper, Gerhard (1)
-
Hemelrijk, Charlotte K (1)
-
Kale, Sohan (1)
-
Kapral, Raymond (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cates, Michael E.; Fodor, Étienne; Markovich, Tomer; Nardini, Cesare; Tjhung, Elsen (, Entropy)Many complex fluids can be described by continuum hydrodynamic field equations, to which noise must be added in order to capture thermal fluctuations. In almost all cases, the resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is also reflected in numerical discretisation schemes. We draw together our recent findings concerning the construction of such schemes and the interpretation of their continuum limits, focusing, for simplicity, on models with a purely diffusive scalar field, such as ‘Model B’ which describes phase separation in binary fluid mixtures. We address the requirement that the steady-state entropy production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium. Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate the nonvanishing EPR for ‘active field theories’ in which new terms are deliberately added to the fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful treatment of so-called ‘spurious drift’ and other closely related terms that depend on the discretisation scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even when noise is additive, as most active field theories assume. We then review how such noise can become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode the underlying chemical processes responsible for activity. In this case, the spurious drift terms need careful accounting, not just to evaluate correctly the EPR but also to numerically implement the Langevin dynamics itself.more » « less
-
Gompper, Gerhard; Winkler, Roland G; Speck, Thomas; Solon, Alexandre; Nardini, Cesare; Peruani, Fernando; Löwen, Hartmut; Golestanian, Ramin; Kaupp, U Benjamin; Alvarez, Luis; et al (, Journal of Physics: Condensed Matter)
An official website of the United States government
